Artificial Neural Networks for Snow Avalanche Forecasting in Indian Himalaya

نویسندگان

  • Amreek Singh
  • Ashwagosha Ganju
چکیده

ASTRACT: Snow avalanches pose serious threat to Indian troops deployed in snow-bound areas of western Himalaya during winter months. The most viable way to mitigate avalanche threat in these areas is to precisely predict the time and place of their occurrences. Since, the factors involved in the formation of an avalanche are too many and underlying physical processes are quite complex, no prediction model can completely imitate the thought process and analysis methods of an expert forecaster. However, with the recent developments in the field of computational capabilities and Artificial Intelligence, improved models are coming up and proving to be reliable assistant to avalanche forecasters. In this direction, an attempt has been made to exploit the technique of Artificial Neural Networks (ANN). The base model is inspired by the popular non-parametric k-Nearest Neighbours method, where the two-parameter output is processed through ANN for classification. The model has been tested for an avalanche prone sector of Kashmir region and results are quite satisfactory. The paper discusses in detail the overall methodology adopted in the development of present model, and test results observed. Further possible use of Artificial Intelligence techniques in avalanche forecasting has also been discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Avalanch Zoning Using Artificial Neural Network (MLP) Models (Case Study: Mountainous Area of North Alborz Province)

Avalanche is one of a variety of mass movements that refers to the rapid movement of masses of snow in the direction of slope gradient. Avalanche drives in addition to snow, rock and soil and plant and damage the communication lines, buildings and power lines on the way to the avalanche. In this research, domains with avalanche potential were zoned using artificial neural network model (MLP). I...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

Forecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System

Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...

متن کامل

An Approach of Artificial Neural Networks Modeling Based on Fuzzy Regression for Forecasting Purposes

In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008